Embryonic Stem Cell-Derived Factors Inhibit T Effector Activation and Induce T Regulatory Cells by Suppressing PKC-θ Activation
نویسندگان
چکیده
Embryonic stem cells (ESCs) possess immune privileged properties and have the capacity to modulate immune activation. However, the mechanisms by which ESCs inhibit immune activation remain mostly unknown. We have previously shown that ESC-derived factors block dendritic cell maturation, thereby indirectly affecting T cell activation. Here, we show that ESC-derived factors also directly affect T cell activation. We provide the first demonstration that ESC-derived factors significantly down-regulated the expressions of IL-2 and IFN-γ, while markedly up-regulating the expression of IL-10, TGF-β, and Treg transcription factor Foxp3 in CD4+ CD25+ T cells. Furthermore, ESC-derived factors robustly suppressed T cell proliferation in response to the protein kinase C-θ (PKC-θ) activator phorbol 12-myristate 13-acetate (PMA). Western blot analysis indicated that ESC-derived factors prevented PKC-θ phosphorylation without influencing total PKC-θ levels. Moreover, IκB-α degradation was abrogated, confirming absence of PKC-θ activity. The impact of ESC-derived factors on PKC-θ activation appeared to be specific since other upstream T cell signaling components were not affected. In conclusion, ESCs appear to directly impact T cell activation and polarization by negatively regulating the PKC-θ pathway.
منابع مشابه
Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملP 89: Reduction of Neuroinflammation in Epilepsy by Using Stem Cells Derived Astrocytes
Epilepsy is neurological disorders that afflict many people around the world with a higher prevalence rate in children and in low income countries. Temporal lobe epilepsy (TLE) is result from hippocampal sclerosis is a neurological disorder with difficult treatment. Stem cells can transform into any type of cells such as glial cells, consequently stem cells can use for medical treatment. Stem c...
متن کاملIntervention of PKC-θ as an immunosuppressive regimen
PKC-θ is selectively enriched in T cells and specifically translocates to immunological synapse where it mediates critical T cell receptor signals required for T cell activation, differentiation, and survival. T cells deficient in PKC-θ are defective in their ability to differentiate into inflammatory effector cells that mediate actual immune responses whereas, their differentiation into regula...
متن کاملPKC-Theta in Regulatory and Effector T-cell Functions
One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teffs) or regulatory (Tregs) T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cel...
متن کاملPKC-θ function at the immunological synapse: prospects for therapeutic targeting.
Protein kinase C (PKC)-θ regulates conventional effector T (Teff) cell function. Since this initial finding, it has become clear that the role of PKC-θ in T cells is complex. PKC-θ plays a central role in Teff cell activation and survival, and negatively regulates stability of the immunological synapse (IS). Recent studies demonstrated that PKC-θ is required for the development of natural CD4(+...
متن کامل